
CHAPTER 1

Introduction

1. What is random matrix theory?

A random matrix is a matrix whose entries are random variables. The eigenvalues and
eigenvectors are then random too, and the main objective of the subject is to understand
their distributions. This statement omits many other interesting aspects of random matrices,
but is operationally useful to keep in mind. We start with examples.

(1) Let X1, . . .Xn be i.i.d p×1 random vectors having Np(0,Σ) distribution. Assume
that Σ is unknown. Based on the data a natural estimate for Σ is the sample
covariance matrix

Sn :=
1
n

n

∑
k=1

XkXt
k.

Historically, this was the first random matrix to be studied,and goes by the name
of Wishart matrix.

(2) Let X = (Xi, j)i, j≤n where Xi, j, i ≤ j are i.i.d real or complex valued random
variables and Xi, j = X j,i. Then X is a Hermitian random matrix and hence has
real eigenvalues. If we assume that Xi, j have finite second moment, this matrix
is called Wigner matrix.

Its origin lies in the study of heavy nucleii in Physics. Essentially, the be-
haviour of a nucleus is determined by a Hermitian operator (the Hamiltonian
that appears in Schrodinger’s equation). This opearator is a second order differ-
ential operator in about as many variables as the number of protons and neutrons
and hence is beyond exact determination except in the simplest atoms. Eugene
Wigner approached this problem by assuming that the exact details did not matter
and replaced the Hermitian operator by a random Hermitian matrix of high di-
mensions. The eigenvalues of the original operator denote the energy levels and
are of physical interest. By considering the eigenvalues of the random matrix,
Wigner observed that statistically speaking, the

(3) Consider the matrix A = (ai, j)i, j≤n with i.i.d entries. There is less physical moti-
vation for this model but probabilistically appears even simpler than the previous
model as there is more independence. This is a false appearance, but we will
come to that later!

(4) Patterned random matrices have come into fashion lately. For example, let Xi be
i.i.d random variables and define the random Toeplitz matrix T =

(
X|i− j|

)
i, j≤n.

One can also consider the asymmetric Toeplitz matrix. Many questions about the
eigenvalues of these matrices are still open.

(5) Random unitary matrices.
(6) Random Schrodinger operators or random tridiagonal matrices.
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2. Principal component analysis - a case for studying eigenvalues

We saw some situations in which random matrices arise naturally. But why study their
eigenvalues. For Wigner matrices, we made the case that eigenvalues of the Hamiltonian
are important in physics, and hence one must study eigenvalues of Wigner matrices which
are supposed to model the Hamiltonian.

Here we make a case for studying the spectrum of the Wishart matrix which is more
easy to understand for those of us physicsly challenged. Suppose X1, . . . ,Xn are p× 1
vectors. For example, they could be vectors obtained by digitizing the photographs of
employees in an office, in which case n = 100 and p = 10000 are not unreasonable values.
Now presented with another vector Y which is one of the employees, we want a procedure
to determine which of the Xis it is (for example, there is a door to a secure room where a
photo is taken of anyone who enters the room, and the person is identified automatically).
The obvious way to do it is to find the L2 norm ‖Y −Xi‖2 for all i ≤ n and pick the value
of i which minimizes the distance. As p is large, this involves a substantial amount of
computation. Is there a more efficient way to do it?

There are many redundancies in the photograph. For example, if all employees have
black hair, some of the co-ordinates have the same value in each of the Xis and hence is
not helpful in distinguishing between individuals. Further, there are correlations. That is,
if a few pixels (indicating the skin colour) are seen to be white, there is no need to check
several other pixels which will probably be the same. How to use this redundancy in a
systematic way to reduce computations?

We look for the unit vector α∈Rp such that αtX1, . . . ,αtXn have maximum variability.
For siimplicity assume that X1 + . . .+Xn = 0. Then, the variance of the set αtXj is

1
n

n

∑
j=1

(αtXj)2 = αt

(
n

∑
j=1

XjXt
j

)
α = αtSnα

where Sn is the sample covariance matrix of Xjs. But we know from linear algebra that
the maximum of αtSnα is the maximum eigenvalue of Sn and the maximizing α is the
corresponding eigenvector. Thus we are led to eigenvalues and eigenvectors of Sn. In this
problem, Xj are random, but it may be reasonable to suppose that Xjs themselves (the
employees) are samples from a larger population, say Np(0,Σ). If we knew Σ, we could
use the first eigenvector of Σ, but if we do not know Σ, we would have to use the first
eigenvector of Sn. The leads to the question of whether the first eigenvalue of Sn and of Σ
are close to each other? If p is not small compared to n, one cannot expect such luck. More
generally, by taking the top d eigenvectors, αi, i ≤ d, we reduce the dimension of vectors
from p to d by replacing Xj by the vector Yj := (αt

1Xj, . . . ,αt
dXj).

In any case, for now, this was just a motivation for looking into eigenvalues and eigen-
vectors of random matrices.

3. Some language and terminology and background

The space of probability measures: Let P (R) denote the space of Borel probability
measures on R. On P (R), define he Lévy metric

d(µ,ν) = inf{a > 0 : Fµ(t−a)−a≤ Fν(t)≤ Fµ(t +a)+a ∀t ∈ R}.

P (R) becomes a complete seperable metric space with the metric d. An important but easy
fact is that d(µn,µ)→ 0 if and only if µn→ µ in the sense of distribution (its importance is in
that it shows weak convergence to be metrizable). Recall that convergence in distribution
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or convergence weakly means that in terms of distribution functions, Fµn(x)→ Fµ(x) for all
x that are continuity points of Fµ.
ESD of a random or non-random matrix: Consider an n× n Hermitian matrix X with
eigenvalues λ1, . . . ,λn. The empirical spectral distribution (ESD) of X is the random mea-
sure LX := ∑n

k=1 δλk . If X is random, let LX = E[Ln] be the expected ESD of X . This means
that L[a,b] = E[L[a,b]] = 1

n E[#{k : λk ∈ [a,b]}].
For a fixed matrix X , LX is an element of P (R). If X is random, LX is an element of

P (R), while LX is a random variable taking values in P (R) (that is, a measurable function
with respect to the Borel sigma algebra on P (R)).

Why do we talk about the empirical measures instead of eigenvalues directly? There
are two advantages. Firstly, the eigenvalues of a matrix come without any special order,
and LX equally disregards the order and merely considers eigenvalues as a set (with ap-
propriate multiplicities). Secondly, most often we study asymptotics of eigenvalues of a
sequence of matrices Xn as the dimension n increases. If we think of eigenvalues as a
vector (λ1, . . . ,λn), say by writing them in ascending order, then the space in which the
vector takes values is Rn which changes with n. To talk of the limit of the vector becomes
meaningless. But if we encode the eigenvalues by the ESD LXn , then they all take values
in one space P (R) and we can talk about taking limits.

Exercise 1. Make sure you understand what the following statements mean.
(1) LXn → µ where Xn is a sequence of non-random matrices and µ ∈ P (R).
(2) LXn

P→ µ or LX
a.s.→ µ where Xn is a sequence of random matrices and µ ∈ P (R).

Does this make sense if µ is itself a random probability measure?

4. Gaussian random variables

A standard normal random variable X is one that has density (2π)−1/2 exp{−x2/2}.
We write X ∼N(0,1). If X ,Y are i.i.d N(0,1), then the complex random variable a := (X +
iY )/

√
2 is said to have standard complex Gaussian distribution. We write a∼CN(0,1). a

has density π−1 exp{−|z|2} on the complex plane.
We assume that you know all about multivariate normal distributions. Here is a quick

recap of some facts, but stated for complex Gaussians which may be a tad unfamiliar. Let
a = (a1, . . . ,an)t where ak are i.i.d CN(0,1). If Qm×n is a complex matrix and um×1 a
complex vector, we say that b = u+Qa has CNm(u,Σ) distribution, where Σ = QQ∗.

Exercise 2. Let a,b be as above.
(1) Show that that distribution of b depends only on v and Σ = QQ∗.
(2) Show that E[bk] = uk and E[(bk−uk)(b!−u!)] = 0 while E[(bk−uk)(b!−u!)] =

Σk,!.
(3) If Q is nonsingular, show that b has density 1

πn det(Σ) exp{−(z− u)∗Σ−1(z− u)}
on Cn.

(4) If b∼CNm(u,Σ), find the distribution of c := w+Rb where wp×1 and Rp×m.
(5) The characteristic function of a Cm-valued random vector c is the function ϕ :

Cm → C defined as ϕ(w) := E[exp{iℑ{w∗c}}]. Show that if u = 0, then the
characteristic function of b is ϕ(w) = exp{− 1

4 w∗Σw}.
(6) If bm×1 and cn×1 are such that (bt ,ct)t has CN(u,Σ) we say that (b,c) has joint

complex Gaussian distribution. Write

(1) u =
[

u1
u2

]
, Σ =

[
A B
B∗ C

]
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where the dimensions of ui and A,B,C are self-evident. Then, show that b ∼
CNm(u1,A) and the conditional distribution of c given b is CN(u2−B∗A−1(b−
u1),C−B∗A−1B).

(7) Suppose Xm×1 and Ym×1 are real Gaussian vectors. Under what conditions is
X + iY have a complex Gaussian distribution?

Wick formula/Feynman diagram formula: Since the distribution of a real or complex
Gaussian vector depends only on the mean vector and and covariance matrix, answers to
all questions about the distribution must be presentable as a function of these parameters.
Of course, in practice this may be impossible. One instance is the expectation of a product
of Gaussians, and we show now that it can be written as a weighted sum over certain
combinatorial objects. We first define two multilinear functions on matrices (the functions
are linear in each column or each row). Let Sn denote the symmetric group on n letters. A
matching of the set [n] is a partition of [n] into disjoint subsets of size two each. Let Mn
denote the set of matchings of the set [n] (it is nonempty if and only if n is even).

Definition 3. Let A be an n× n matrix. The permanent of A is defined as per(A) :=
∑π∈Sn ∏n

i=1 ai,πi . If A is symmetric, the hafnian of A is defined as haf(A) := ∑M∈Mn ∏ai,Mi .
Here for each matching M, we take the product over all pairs in M, and each pair is taken
only once.

Lemma 4. Let (bt ,ct)t be a complex Gaussian vector as in (1). Then

E

[
k

∏
i=1

bi

!

∏
j=1

c!

]
= per(B).

In particular, if b∼CN(0,Σ) then E[|b1|2 . . . |bm|2] = per(Σ).

PROOF. It suffices to prove the second statement (why?). Thus, let b ∼ CNm(0,Σ).
Then, by exercise 2 we have its characteristic function

E
[

exp
{

1
2

w∗b− 1
2

b∗w
}]

= exp
{
−1

4
w∗Σw

}
.

Differentiate once with respect to w1, . . . ,wm and once with respect w1, . . . ,wm and then set
w = 0. Differentiating under the expectation, on the left side we get (−i)mim

22m E[|b1 . . .bk|2].
On the right side, expanding the exponential in series we get ∑(k!)−14−k(w∗Σw)k. Terms
with k < m vanish upon differentiation, while those with k > m vanish when we set w = 0
(since at least one w j factor remains after differentiating). Thus we only need to differen-
tiate

(w∗Σw)m = ∑
i1,...,im
j1,..., jm

wi1w j1 . . .wimw jmσi1, j1 . . .σim, jm .

Only those summands in which {i1, . . . , im} and { j1, . . . , jm} are both permutations of
{1, . . . ,m} survive the differentiation, and such a term contributes ∏k σik, jk . Thus, the
right hand side finally reduces to

(m!)−14−m ∑
π,τ∈Sm

m

∏
k=1

σπk,τk = m!4−m ∑
π,τ∈Sm

m

∏
k=1

σk,τπ−1(k) = 4−mper(Σ)

since each permutation in Sm occurs m! times as τπ−1. !
On similar lines (or can you think of another way without using characteristic func-

tions?), prove the following Feynman diagram formula for real Gaussians.
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Exercise 5. (1) Let X ∼ Nm(0,Σ). Then E[X1X2 . . .Xm] = haf(Σ). In particular, the
expectation is zero if m is odd.

(2) For X ∼ N(0,1), we have E[X2m] = (2m− 1)(2m− 3) . . .(3)(1), the number of
matchings of the set [2m].

The semicircle law: A probability distribution that arises frequently in random matrix
theory and related subjects, but was never seen elsewhere in probability theory (as far as I
know) is the semicircular distribution µs.c with density 1

2π
√

4− x2 on [−2,2].
Exercise 6. Show that the odd moments of µs.c are zero and that the even moments are
given by

(2)
Z

x2nµs.c(dx) =
1

n+1

(
2n
n

)
.

Catalan numbers: The number Cn = 1
n+1

(2n
n
)

is called the nth Catalan number. It has
many combinatorial interpretations and arises frequently in mathematics. Here are some
basic properties of Catalan numbers.

Exercise 7. (1) Show the recursion Cn+1 = ∑n
i=1 Ci−1Cn−i where the convention is

that C0 = 1.
(2) Show that the generating function of the Catalan numbers, C(t) := ∑∞

n=0 Cntn

is satisfies tC(t)2 = C(t)+1. Conclude that C(t) = 1
2t (1+

√
1−4t). [Note: By

Stirling’s formula, estimate Cn and thus observe that C(t) is indeed convergent on
some neighbourhood of 0. This justifies all the manipulations in this exercise].

We show that Catalan numbers count various interesting sets of objects. The first is
the set of Dyck paths.

Definition 8. If X1, . . . ,Xn ∈ {+1,−1}, let Sk = X1 + . . . + Xk. The sequence of lattice
points (0,0),(1,S1),(2,S2), . . . ,(n,Sn) is called a “simple random walk path”. A simple
random walk path of length 2n is called a bridge if S2n = 0. A simple random walk bridge
is called a Dyck path of length 2n if Sk ≥ 0 for all k ≤ 2n.

Lemma 9. The number of Dyck paths of length 2n is Cn
1

PROOF. Let Aq be the set of all sequences X ∈ {+1,−1}2q+1 such that ∑i Xi = −1
and such that X2q+1 =−1. Let Bq be the set of sequences X in Aq for which S j >−1 for all
j ≤ 2q. Obviously, Aq is in one-to one correspondence with simple random walk bridges
of length 2q (just pad a −1 at the end) and hence |Aq| =

(2q
q
)
. Further, Bq is in bijection

with the set of Dyck paths of length 2q.
If X ,Y ∈ Aq, define X ∼ Y if (X1, . . . ,X2q) can be got by a cyclic permutation of

(Y1, . . . ,Yq). This is an equivalence relationship and the equivalence classes all have size
q+1 (since there are q+1 negative signs, and any of them can occur as the last one). We
claim that exactly one path in each equivalence class belongs to Bq.

Indeed, fix X ∈ Aq, and consider the first index J such that SJ = min{S0, . . . ,S2q}.
Obviously we must have XJ = −1. Consider the cyclic permute Y = (XJ+1, . . . ,XJ). We
leave it as an exercise to check that Y ∈ Bq and that Y ′ (∈ Bq for any other cyclic shift of
X . This shows that exactly one path in each equivalence class belongs to Bq and hence
|Bq| = (q+1)−1|Aq| = Cq. !

1The beautiful proof given here is due to Takács. An easy generalization is that if Xi ≥−1 are integers such
that Sn =−k, then there are exactly k cyclic shifts of X for which minm<n Sm >−k. An interesting consequence
is Kemperman’s formula: If Xi ≥−1 are i.i.d integer valued random variables, then P(τ−k = n) = k

n P(Sn =−k).
Here τ−k is the first hitting time of −k.
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Exercise 10. In each of the following cases, show that the desired number is Cn by setting
up a bijection with the set of Dyck paths. This is a small sample from Stanley’s Enumera-
tive combinatorics, where he gives sixty six such instances!

(1) The number of ways of writing n left braces “(” and n right braces “)” legiti-
mately (so that when read from the left, the number of right braces never exceeds
the number of left braces).

(2) A matching of the set [2n] is a partition of this set into n pairwise disjoint two-
element subsets. A matching is said to be non-crossing if there do not exist
indices i < j < k < ! such that i is paired with k and j is paired with !. The
number of non-crossing matchings of [2n] is Cn.

(3) a1,a2, . . . ,an are elements in a group and they have no relationships among them.
Consider all words of length 2n that use each ak and a−1

k exactly once (there are
(2n)! such words). The number of these words that reduce to identity is Cn.

Combine part (2) of exercise 6 with part (3) of exercise 10 to see that the 2n moment of
the semicircle equals the number of non-crossing matchings of [2n]. Except for the phrase
“non-crossing”, this is identical to the combinatorial interpretation of Gaussian moments
as given in part (2) of exercise 5. This analogy between the semicircle and Gaussian goes
very deep as we shall see later.


